Chemical Warfare Agent Sea Dumping off Australia

Revised and Updated Edition
2003
Chemical Warfare Agent Sea Dumping off Australia

Author: Geoff Plunkett

Index

SUMMARY
INTRODUCTION
Chemical Warfare Agent Sea Dumping Episodes
 International Dumping of CWA
 CWA Dumping in Australian Waters
 Northern Territory
 Queensland
 New South Wales
 Victoria
 Exposure to Dumped CWA
 International Incidents
 Australian Incidents
 The Fate of CWA After Dumping
 Corrosion of cylinders
 The breakdown of CWA in sea water
 Factors affecting the breakdown of mustard gas in sea water
 Effects of sea currents and temperature on breakdown rate
 Risks to the public in Australia
 Potential environmental effects
 The Future of Dumped CWA in Australian Waters

REFERENCES
ACKNOWLEDGMENTS
ACRONYMS
APPENDIX A Stockage of Chemical Munitions, US
APPENDIX B Stockage of Chemical Munitions, AUSTRALIAN ARMY
APPENDIX C Stockage of Chemical Munitions, RAAF
FIGURE 1 Likely dump area for 8000 tons of CWA dumped off Brisbane
FIGURE 2 CWA dump areas off Sydney
FIGURE 3 CWA dump areas off Townsville
FIGURE 4 CWA dump area off Victoria

1 Contact address: Geoff.Plunkett@defence.gov.au. Any inaccuracies in this report are the sole responsibility of the author.
SUMMARY

Although the disposal of material in the sea is now very restricted, historically, the disposal of unwanted waste in the ocean has been a very common practice in many parts of the world. Due to its immense size the ocean was thought to have an unlimited absorptive capacity, with any dumped waste having only a very localized effect. Moreover, the material would be well away from any human activity. Even for fishing trawlers operating in the early 1970s, a depth over 120 metres was considered as "very deep water". Nowadays, however, trawlers work in depths to 1,500 metres and material dumped decades before can be accidentally recovered. It is important to know where any hazardous material may lie, both to prevent human contact and to assess the possible ecological consequences.

Sea dumping of unwanted Chemical Warfare Agents (CWA) has occurred at many sites around the world. Most of the dumping episodes occurred after the end of World War II when unused war stocks needed disposal. An estimated 300,000 tonnes of CW munitions were dumped in West European and North Atlantic waters. It appears at least 21,030 tons of Chemical Warfare munitions were dumped into Australian seas at the end of World War II by the United States Army and the defence forces of Australia. This figure probably includes the weight of the containers which housed the agent (be it an artillery shell, bomb or storage vessel) and hence the amount of actual chemical agent could be much less than 21,030 tons. The sea dumping of all significant amounts of CWA war stocks had occurred by the end of 1946, aside from the dumping of 1,634 tons of CWA off Victoria during August/September 1948. Records indicate there have been two ad-hoc dumping episodes since then, one in 1965 and another in 1970.

Dumping can be confirmed in the seas off three states, Queensland (east of Cape Morton), New South Wales (south east of Sydney) and Victoria (west of King Island). Some of the CWA was loaded onto disused ships which were scuttled under supervision. The remainder was dumped in containers or as loose shells or bombs. Mustard gas\(^2\) was the most common type of CWA sea dumped.

During the disposal operation there were several contact incidents with workers handling the CWA or members of the public encountering CWA that had floated to the shore. Since World War II there have been only two accidental recoveries of CWA from the marine environment, both one ton cylinders of mustard gas trawled by fishermen. The bulk of the Chemical Warfare Agents dumped off Cape Moreton are away from current trawling areas but could pose a threat to other activities including sea bed mining. The material off the coast of Sydney appears to be located in an old ocean dumping ground. The area is not used by trawlers. Mustard gas is only slightly soluble in water, but once it

\(^2\) Mustard gas is the historical name given to sulphur mustard blister agent (2,2'-dichloroethyl sulphide).
dissolves, it hydrolyses (reacts with water) rapidly. Mustard gas leaking at a slow rate through corroded containers will hydrolyse and should break down close to the dump positions. At worst, leaking mustard gas should only pose a threat to biota living on or near the discarded drums and artillery shells. The hydrolysis products are thought not to have a significant effect on fish and the dump sites do not correlate with designated marine sensitive environments.

Overseas experience has shown that public knowledge of CWA dumping sites can decrease accident rates. Knowledge of the CWA dumping sites in Australia will help to prevent possible exposure. As the locations of CWA dump sites in Australian waters are in rarely fished or known foul areas, the risk of accidental recovery by a trawler is low. The risk to the general public contacting a CWA container or munition is virtually nil. However, if recovered, ANY ordnance (chemical or non-chemical) must not be touched or tampered with. Inappropriately handled ordnance can be very dangerous. Chemical Warfare Agents recovered overseas have caused serious injury even though the material is over 50 years old. When notified, the local police will contact the relevant authority for its appropriate disposal.
INTRODUCTION

Although the disposal of material in the sea is now very restricted, historically, the disposal of unwanted waste in the ocean has been a common practice in many parts of the world. Due to its immense size the ocean was thought to have an unlimited absorptive capacity with any dumped waste having only a very localised effect. Moreover, the material would be well away from any human activity. Many items, including boats, chemicals, ammunition, inorganic waste and other hazardous material were dumped in the world’s seas. There was often little understanding of the possible dangers to human safety and the ecology of the sea. It was not realised the dumping areas would be exploited for their resources in later years. Even for fishing trawlers operating in the early 1970s, a depth over 120 metres was considered as “very deep water”. Nowadays, however, trawlers near Australia work in depths to 1,500 metres and material dumped in previous decades has been accidentally recovered. This was drawn to the public’s attention in 1972/1973 when several drums of industrial waste were recovered by trawlers off Sydney. There were immediate moves to limit sea dumping which culminated in the introduction of the Environment Protection (Sea Dumping) Act 1981. Currently, most permits are only issued for dredge spoil disposal and for the creation of artificial reefs [Plunkett (2003)].

During World War II CWA stocks were held at many sites around Australia. The Japanese had reached as far as Papua New Guinea and had been known to use CWA during warfare. Australia had reserved the right to use CWA to retaliate. The stocks of CWA in Australia were held under General MacArthur’s Chemical Warfare plan for the South West Pacific Area (SWPA). Although their use was dependent on the direct order of General MacArthur, the stocks were stored in Australia under either US Army, Royal Australian Air Force (RAAF), Australian Army or Navy supervision. None of the CWA munitions were used during combat and at the end of the war the material was in need of elimination [see The Gillis Report and Plunkett (in prep.) for more on the history of CWA in Australia].

This report, using all currently available Federal Government records and other published material, details all knowledge of where and how much CWA has been sea dumped in Australian seas. The report also examines what may have happened to the containers after they were dumped, including the corrosion rate of the cylinders and the breakdown of mustard gas as it reacts with the sea water. It is important to know

3 Based on conversations with some of those involved in the CWA dumping operations off Australia. See also Plunkett (2003).

4 Bureau of Rural Sciences (BRS) pers. comm.

5 Chemical Weapons in Australia during World War II.

6 The information is fragmentary, partly due to the lack of records kept at the time the dumping operations were undertaken but also due to the as yet incomplete cataloguing of old archives. Other material may exist on files with a title that may not accurately reflect its contents or may exist in state government archives or in other sources.

7 Dumping of CWA was often referred to as "sea drowning" at the time.
where any CWA may lie, both to prevent human contact and to assess the possible ecological consequences. Although, in most cases, the amount and types of CWA dumped is not known, inventories are available on CWA stocks supervised by the US forces in Australia. This is important, as evidence suggests most of these stocks were eliminated by sea dumping. The RAAF and Australian Army (after conducting tests) burnt, buried or vented (e.g. phosgene) as well as sea dumped a proportion of their supervised stocks.

Chemical Warfare Agent Sea Dumping Episodes

International Dumping of CWA

The dumping of CWA at the end of World War II is a well documented phenomenon around the world. Large amounts of CWA were dumped in West European and North Atlantic waters. It is estimated 300,000 tonnes of Chemical Warfare munitions were dumped near Europe after WWII. During 1945-1949 Great Britain sank barges with 175,000 tonnes of its own and German CW munitions near Ireland. More than 200,000 tonnes were apparently accumulated in Baltic ports and sent for dumping. The 300,000 tonnes of dumped CW munitions apparently consisted of more than 600,000 objects [for detail on CW dumping in European waters see the papers in Kaffa (1996) and Leewis (1991)]. Upwards of 4,900 tons of CWA, (included in 118,000 shells and 574,000 canisters) was dumped off Japan by Japanese workers under orders from the US occupation forces (Kurata 1980). Dumping was seen as the best method of disposal, there being too much to store or burn. The dumping was sometimes done by loading an old ship and scuttling the ship and its contents or by dumping loose bombs or containers of CWA. The size of these overseas operations can put some perspective on the scale of the Australian operation.

CWA Dumping in Australian Waters

Because of the manpower commitment and possible danger involved in maintaining large stocks of chemical weapons (CW) over a long period as they became unserviceable, on 8 September 1945, the Department of Air proposed that if a decision was made to destroy all or part of the RAAF stocks, that the only feasible method of doing so would be drowning at sea at 500 fathoms (914 metres). The weapons to be disposed by this method were described as the following types (a) aircraft bombs of various weights charged with phosgene and mustard gas (b) aircraft spray installations charged with mustard gas and (c) steel drums of various capacities (3-1/3 gallons to 90 gallon drums) charged with mustard gas. The areas

8 The terms Chemical Warfare Agent, Chemical Weapon and War Gas were used interchangeably by the British and Australians while toxic (gas) was the term principally used by the Americans.

9 The Navigation Directorate of the Department of Supply and Shipping was asked to advise on suitable locations and instructed the RAAF to dump in at least 500 fathoms of water off the continental shelf.

10 See footnote 44.

11 Chemical, Special No. 6 drum.
designated as suitable for disposal, where a depth of 500 fathoms was available, were (a) 250 miles from Darwin (b) 100 miles from Townsville (c) 120 miles from Bowen and (d) 25 miles from Sydney. During this time preparations were being made at No. 1 Central Reserve (CR)12 for the weapons to be drowned eg; the September 1945 report from the Commanding Officer (CO) notes that “CW items are receiving regular attention pending arrangements being completed for disposal by drowning13.

Following a request from the High Commissioner’s office in the UK (with a view to saving on transport and shipping costs), trials were started to investigate the practicability of disposing of large stocks of mustard gas by burning14. In a RAAF HQ letter, 3 October 1945, it was advised that mustard gas ammunition would still be most likely disposed of by sea dumping but that burning trials were being carried out. Two experimental burns were subsequently undertaken to consider the efficiency of destruction of a range of munition types. The successful completion of the trials at the Australian Field Experimental Station (Proserpine) and Army stocks from 1 BAD (Base Ammunition Depot), led to a decision that CW stocks were to be disposed not only by sea dumping, but also by burning and venting (for the phosgene weapons only).

Before the CWA were sea dumped, tests were often held on the individual types to assess their buoyancy in the marine environment15. It is known, however, that not all the dumped CWA sank to the seabed as some material was recovered from the shore (see below). Sea dumping of CWA will be discussed for each State.

Northern Territory

An area north of Bathurst Island was designated as a disposal area for CWA stocks held in No. 5 Central Reserve (RAAF). The area was bounded by the following coordinates, [(8º 51' S, 129º 12' E); (8º 56' S, 129º 12' E); (8º 51' S, 129º 16' E); (8º 56' S, 129º 16' E)]17. It is unlikely any CW material was dumped here as it is now

12 RAAF No. 1 CR Head Quarters was based at Marangaroo. The reserve also encompassed 3 CW subdepts in New South Wales, being Glenbrook, Picton and Clarence, all of which were tunnels.

13 Also, a little later in a monthly report (either October or November 1945) the CO report reads “CW stocks are being inspected with a view to disposal by sinking at sea”.

14 On 21 September 1945 the success of a burning trial of 65 lb bombs in the UK was noted, although it was still uncertain as to whether Australia would burn or sea dump stocks; “present opinion is that Australia may consider burning rather than sea dumping”.

15 For an example see the table in Appendix A, CW stocks at No. 1 CR, Data to show behaviour on immersion in sea water. Australian Archives, National Office, Parkes, ACT. Series Number A705, Control Symbol 15/31/19. The assessment was undertaken by determining weight (crated and uncrated) 2. establishing the limits of minimum and maximum weights when variations were found to exist 3. determining the overall volume of all stores and 4. calculating the weight of sea water displaced by each item. If the weight of the munition/container was greater than the weight of sea water it displaced then it would sink.

16 Symbology for co-ordinates: °=degrees, ′=minutes, ″=seconds, S=South, N=North, E=East and W=West.

17 Australian Archives, National Office, Parkes, ACT (Australian Capital Territory, Canberra). Series
known that 2000 tons of CW held at 88 mile (the only known storage site for RAAF munitions in the Northern Territory) were destroyed by burning at Fenton Airfield\(^\text{18}\).

Queensland

A war diary entry for the RAAF Chemical Research Unit (CRU), dated 21 September 1945, states that leaking M47A2 bombs\(^\text{19}\) were disposed of by burial at sea. Two sites were chosen near Bowen to dump CWA from the RAAF No.19 Replenishing Centre at Talmoi and the CRU at Bowen (figure 3). For the most westerly site the bounding coordinates were \(\left[(18^\circ\ 00'\ S,\ 147^\circ\ 55'\ E);\ (18^\circ\ 15'\ S,\ 147^\circ\ 55'\ E);\ (18^\circ\ 00'\ S,\ 148^\circ\ 10'\ E);\ (18^\circ\ 15'\ S,\ 148^\circ\ 10'\ S)\right]\). The more easterly site had an area described by the following geographic locations \(\left[(18^\circ\ 05'\ S,\ 148^\circ\ 30'\ E);\ (18^\circ\ 20'\ S,\ 148^\circ\ 30'\ E);\ (18^\circ\ 05'\ S,\ 148^\circ\ 45'\ E);\ (18^\circ\ 20'\ S,\ 148^\circ\ 45'\ E)\right]\). Two experimental sea dumpings were made using stocks of CWA from the CRU and the Australian Field Experimental Station at Prosperine\(^\text{21}\). The tug "Keera" was loaded with 320 mustard charged M47A2 100 pound bombs which were dumped at 18\(^\circ\) 30' S, 148\(^\circ\) 5' E at 1,098 metres (600 fathoms) on 12 October 1945. The bombs (crated) had been loaded as deck cargo. Limited tests were made en route regarding the possible buoyancy of the bombs. A single bomb was attached to a 10 fathom line and dropped over the side and immediately paid out to its full length, indicating the bombs would sink. On arrival the bombs were uncrated and dropped singly over the side\(^\text{22}\). On 14 October 1945 the same boat dumped 700 mustard charged 65 pound bombs at 18\(^\circ\) S, 148\(^\circ\) E at a depth of 1,098 metres (600 fathoms). As for the M47A2 bombs, a buoyancy test was undertaken with 3 - 65 lb bombs attached in turn to a 10 fathom line and dropped over board. In this case the bombs floated and a decision was made to pierce each bomb. Personnel wearing impregnated clothing removed the bombs from the crates and

\(^{18}\) Based on the war diary records of 8 Stores Depot (RAAF) which took over the management of 88 mile from No. 5 CR and also from interviews with the RAAF CW Armourers who undertook this disposal.

\(^{19}\) This type of bomb was imported by the United States forces in Australia, although some were held by the CRU for aerial tests in conjunction with the CW research facility, initially located at Innisfail and then Proserpine.

\(^{20}\) Australian Archives, National Office, Parkes, ACT. Series Number A705, Control Symbol 15/31/19. We determined the coordinates from an old map found on these files.

\(^{21}\) Australian Archives, National Office, Parkes, ACT. Series Number A705, Control Symbol 15/31/19. These dumping episodes are also mentioned in the war diary for the CRU. An entry in the CRU war records also states that 65lb bombs were loaded onto trucks and transported to the marine section FBMU (Flying Boat Maintenance Unit) for disposal at sea on 15 February 1945.

\(^{22}\) The crates were returned to the CRU for burning.
holding the bomb over the side pierced it 3 times with a pick axe (on the side of the bomb away from the vessel and low down). Mustard flowed into the sea and the bombs sank immediately. Due to rough seas, contaminated spray flew over personnel operating astern. The CW munitions from this latter dumping fall within the coordinates of the more westerly dump square (see figure 3).

In late 1945 sea dumpings also occurred off Cape Moreton near Brisbane. Records state a total of 8,000 tons of CW munitions, believed to represent all the stocks of CWA stored in Australia under US control were disposed of here. This figure probably includes the weight of the containers which housed the agent (be it an artillery shell, storage container or bomb) and hence the amount of actual chemical agent could be less than 8,000 tons. What was dumped is unknown, however an inventory from 1943 is available which shows the US CWA reserves included bulk mustard, tear gas (CNS), lewisite and solid adamsite candles (see Appendix A). As shown in Appendix A, the US controlled stocks of CWA at sites far removed from Brisbane including Geelong in Victoria, Kingswood in New South Wales, Charters Towers and Kangaroo in northern Queensland. It is very unlikely the stocks at these

23 As for the first dump the crates were returned to the CRU for burning. See also footnote 61.

24 Haug (undated) has the dumping operation occurring from 2 October 1945 to 20 December 1945. Based on a memorandum it is known tear gas grenades that had washed ashore at Maroochydore, 60 to 70 miles north of Brisbane, had been jettisoned by US personnel on or before 4 September 1945 [Memorandum dated 4 September 1945 signed by the Acting Deputy Director of Navigation and Lighthouses, State of Queensland. Ref NQ 45/5 W/S, M45/195/1/3846. Former Department of Transport file. EPA 94/6789 (This number refers to specific files in the former Environment Protection Agency (EPA) (files now held by the Department of the Environment and Heritage, Canberra) file Series Number: EPA - Waste Management Bch - Sea Dumping Records - Database. Federal Government and other records concerning CWA sea dumping have been compiled and collected into this file Series Number)]. Also it is known mustard gas shells were dumped before 3 October 1945 [Letter dated 3 October 1945, signed by Assistant Secretary (Marine) - Department of Supply and Shipping. M45/195/1/3849. Former Department of Transport file. EPA 94/6789]. Although it is not known where the Maroochydore material had been sea dumped by the US, the mustard gas shells had definitely been dumped off Cape Moreton. Although this data does not dispute 2 October 1945 as a start date for sea dumping off Cape Moreton we can conclude other CWA dumping operations were underway, somewhere north of Brisbane, by early September 1945.

25 The amount dumped varies between records. Haug (undated) who had access to other dumping records states 8,000 tons of adamsite candles alone were dumped here [Her entry is ambiguous. It reads {...876 containers of mustard, 93 containers of lewisite, 8,000 tonnes of adamsite candles, projectiles (75mm, 105mm and 155mm) containing an unidentified gas, 314 drums (55 gallon) of CNS, and 432 drums (55 gallon) of CNB} It could mean a combination of adamsite and projectiles at 8000 tonnes]. The available data on stocking rates tends to be contradictory. The differences could be due to a number of variables including the inventories being undertaken at different times (it is known CWA stocks were moved between sites, that stocks were added to and that defective stock was destroyed). The listings could also have been made by different personnel with possibly different objectives or be due to record transcription errors. A number of records have 8,000 tons as the figure dumped. They include records from 1945, made just prior to the dumping operation, which state 8,000 tons was soon to be dumped [Memorandum dated 3 October 1945 signed by the Acting Deputy Director of Navigation and Lighthouses, State of Queensland. Ref NQ 45/5. Former Department of Transport file. EPA 94/6789]. It is not known whether this was an up to date estimate of the CWA stocking levels or based on an older estimate.
sites were transported to Brisbane to be dumped off Cape Moreton26. Only the US stores of CWA in South East Queensland are likely to have been dumped off Cape Moreton. It is known that a large quantity of CW from the US depot at Darra (Brisbane) was sea dumped off Cape Moreton as shown in this extract from a newspaper article27; “although the disposal had been going on for months, there was still 2,400 tons of gas to be dumped28.

The US Army originally proposed to dump the 8,000 tons of CWA munitions along the 183 metre line (100 fathoms) (see figure 1), some 10 to 12 miles off Cape Moreton. At 12.5 nautical miles east of the northern tip of Cape Moreton there was a designated dumping site as proclaimed by the Beaches, Fishing Grounds, and Sea Routes Protection Act 1932, with a centre point of [27º S, 153º 42' E at 256 metres (140 fathoms)] and a diameter of five nautical miles (being the most westerly circle in figure 1). This was one of fourteen dumping sites designated around Australia by a Federal Government Act of Parliament. Although originally chosen as sites to dump derelict boats, these sites were used as general waste dumping grounds where chemicals and other material were dumped [Plunkett (2003)]. This site became an official Australian Army dumping position for unserviceable ammunition although the date of its first use is unknown. It is known some of the 8,000 tons of CWA was dumped beyond the 183 metre line (100 fathom line)29 and it is almost certain a proportion was dumped within the designated dump site30. Some government records

26 The fate of the CWA at these more distant sites is not known, however, it is possible it was sea dumped near the site of storage.

27 “Daily Telegraph”, 17 November 1945.

28 The gas was brought from one side of Brisbane in contractors trucks, over the Story Bridge and through The Valley to Pinkenba where it was loaded on the “City of Fort Worth”.

29 Information based on a letter dated 3 October 1945, signed by Assistant Secretary (Marine) - Department of Supply and Shipping, M45/195/1/3849. Former Department of Transport file. Also various newspaper articles including the Melbourne "Sun", 19 November 1945; “Daily Telegraph" and "Courier Mail" - Queensland, both dated 17 November 1945. Also the fact that a one ton cylinder of mustard gas was retrieved at a depth of less than 110 fathoms off Cape Moreton (see further on), EPA 94/6789.

30 If only because the west point of the dump circle is very close to the 100 fathom line (see figure 1; note the 100 fathom line is actually closer to the dump circle than is shown in this figure) and any boats dumping beyond this line would land some of the CWA within this dumping ground. More importantly, we know the dump circle was an official "Old" Australian Army dumping ground that was being deliberately targeted by the forces before and after World War II for the dumping of unserviceable ammunition and \textit{dangerous materials} (my emphasis - based on a warning notice to fisherman issued by the Australian Army; an equivalent dump ground off Sydney was also being used by the Defence forces during 1945/1946; see figure 2 and footnote 86).

The "Old" Army dump circle was replaced by a "New" Army dumping ground (date unknown) located further to the east and in deeper water at 27º S, 154º E (figure 1 shows the "Old" dump circle being the most westerly and the "New" dump circle further to the east; see also footnotes 83 & 84). One record states the CWA was most likely dumped in the two gazetted areas off Cape Moreton as stated in the Notice to Mariners. The Notice to Mariners lists the dump areas as proclaimed by the Beaches, Fishing Grounds, and Sea Routes Protection Act 1932 and as there is only one gazetted area off Cape Moreton, this reference must be referring both to the gazetted area and the "new" Army dump ground in deeper water.
also indicate some of the CWA was dumped further out to sea at 25 miles east of Cape Moreton at 27º S, 154º E [1,098 metres (600 fathoms)]31. These co-ordinates were the centrepoint for another official Australian Army dumping site, again with a diameter of 5 nautical miles. This second Army dump circle replaced the Army dump circle closer to Cape Moreton at an unknown date (see footnote 30 & 84). In conclusion, CWA could be found scattered from the 183 metre line (100 fathom line) to the 1,097 metre line (600 fathom line) within the rectangle shown in figure 1. It is not known where the majority of the chemical warfare munitions are located within this area. United States authorities have also confirmed that 6,396 tons of toxic material and 1,600 tons of small arms ammunition were dumped “off the coast of Australia – site unknown”32. This matches the entry in Haug (undated).

In 1957, after a clearance operation of the former US CW storage depot at Darra, Brisbane, CW contaminated soil33 was packed into 40-50 lb sacks and dumped into the sea into 600 feet of water34.

In the Gillis Report, an eyewitness involved with CWA operations during the war remembers dumping mortars (number unspecified) in Mourilyan Harbour. Originating from Innisfail they had been fired experimentally. After firing, fifty percent were UXBs (unexploded bombs) which were sea dumped in order to avoid further mustard gas contamination of the firing range. Other dumping operations appear to have been undertaken off Queensland. A one ton cylinder of bulk mustard gas was encountered by a trawler at 20º 42.8' S, 153º 35.7' E in 69 fathoms (19 January 1970) and later in the 1970s a one ton cylinder came ashore in the same area [both from Haug (undated)]. Two 155mm (6 inch) mustard gas (HD) filled projectiles have been recovered in the last 4 years from the Moreton Bay area. It is understood that they were recovered during dredging operations in the shipping channel which passes between Moreton Island and Bribie Island35.

31 Letter dated 23 November 1945, signed by Acting Deputy Director, Navigation and Lighthouses, State of Queensland, M45/195/1/3949, former Department of Transport file. EPA 94/6789. This letter was in response to a query as to where the boat, the "City of Fort Worth" was dumping CWA. However an eyewitness on the boat (accepting he is recalling events of 50 years ago) believes it was unlikely the boat would have been able to travel the approximate 60 miles required on the daily trip and concludes the material was probably dumped closer to Cape Moreton (exact location between the 100 and 600 fathom line unknown) (Ron Parsons, pers. comm). See also Haug (undated).

32 Although the disposal site has been linked with John Brewer Reef, this has never been confirmed. A suggestion of CW being discarded at Bouganville Reef (off Cookstown) at 15º 58' 5" S, 147º 21' E is also unconfirmed.

33 Which had been treated with bleach.

34 Newspaper article “The Courier Mail”, Brisbane 16 May 1957.

35 Considerable rust scaling had occurred reducing the outside diameter of the projectiles by up to 12mm. The most likely leakage point for CWA from these type projectiles is at the fuze adapter in the nose of the projectile. This is the thinnest point on the projectile and therefore the most vulnerable point for the action of corrosion and erosion. The long period which these projectiles have been in the sea makes accurate identification extremely difficult if not impossible, given the condition of identifying features (length, diameter, shape, stamped markings, driving band etc) and the addition of heavy marine growth. It was later found that the projectiles, initially believed to be safe to move (no
Another record indicates half of a ton of mustard gas was dumped within the second dumping circle 25 nautical miles east of Cape Moreton at 26° 59’ 30” S, 153° 57’ E on 23 January 1970 at 450 fathoms. It is not known where the material originated.

New South Wales

An eyewitness report from the person responsible for overseeing the sea dumping of Australian Army supplies of CWA stated most of the chemical munitions were dumped 18 miles south south east of Sydney’s South Head. This correlates with (or is at least very near) the dump circle designated off Sydney by the *Beaches, Fishing Grounds, and Sea Routes Protection Act 1932* where it is known the defence forces dumped ordinary ammunition and other material after World War II (figure 2). This dump circle had a centrepoint at 34° S, 151° 36’ E with a 5 nautical mile diameter. The depth at the centrepoint is approximately 275 metres (150 fathoms).

About 5000 tons of CW munitions from the Army site at Albury is believed to have been disposed off Sydney. The initial dumping operations consisted of loading chemical munitions into the hulks of ships damaged by enemy action or ships no longer required. These ships were towed to the dumping site and sunk using explosive charges placed in the ship's keel (at both bow and stern) or by naval gunnery fire using solid armour piercing rounds. Records exist for two of the dumped boats. These were scuttled away from the main dump site 18 miles from Sydney Heads. The first ship used was the SS BANTAM which had been bombed and badly damaged at Oro Bay, New Guinea 1943 (see Parsons and Plunkett 1995). It was towed to Sydney and after the war was loaded with 27,500 chemical rockets, 8,000 4.2 inch chemical mortars and High Explosive shells. It was scuttled 136º Macquarie Light at 32 miles

initiating mechanism - fuze), were now likely to contain CWA. The exact site of their recovery and their origin is not known (Captain Peter Ritchey pers. comm.). The calibre strongly suggests they were dumped by the United States forces in Australia (see Appendix A), although several of these projectiles were sea dumped during the 1957 disposal operation. An eyewitness also recalls seeing 44 gallon drums of CW being pushed into the Whitsunday Passage off a barge at the end of World War 2, although again, there is no corroborating evidence.

36 By vessel “Landing Craft Mechanised (LCM) 1059”.

37 This data was obtained from a listing headed “Army Dumping Activities” which covered the date range, 7 March 1962 to 9 December 1971.

38 Based on an interview conducted 26 May 1992 with the overseer of the dumping operation. Some of the information in this paragraph was collected by Major Chris Hely. This dump circle is more strictly south east than south south east of South Head. However, the point 18 nautical miles from south head in a south south east direction gives a depth of 144 metres, some 2 nautical miles short of the continental shelf. It was explicitly stated the CW was dumped over the shelf.

39 It was concluded the use of a hulk was a more suitable method than chartering a vessel. It was cheaper and “there would be no subsequent flotation of items and the plugs would not need to be removed. All the chemical warfare material could be sunk at any depth, at any desired distance from shore, all in one sealed hold”. Australian Archives, National Office, Parkes ACT. Series Number A705, Control Symbol 15/31/19.

40 Reproduced in Plunkett (2003).

41 Which, due to their type, must have come from the from the Army’s CW ammunition depot at
on 24 September 1946\(^{42}\) (34° 18.8' S, 151° 43.6' E at 1829 metres)\(^{43}\) - see figure 2. The Bantam is also reported to have been loaded with Smoke Curtain Installation (SCI)\(^{44}\) bombs from the RAAF CW stores at Picton\(^{45}\). The ammunition disposed of in the BANTAM was all stored inside the ship’s hold. The ships used for scuttling became progressively smaller until eventually old Manly ferries and dredges were used. In the case of these the ammunition was not always stored in the hold. Another ship the ex Manly ferry the BINNGARRA was scuttled 11 December 1946 with an unknown quantity of CWA. The disposal position was 122° Macquarie Light, 35.5 miles at 1100 fathoms\(^{46}\) (2012 metres) [34º 10.2' S, 151º 53.1' E] which is within a proposed RAAF CWA dumping area (see figure 2 and below). Eventually the supply of old ships was exhausted and dumping operations continued by taking the ammunition out as deck cargo and pushing it overboard. The CWA was shipped by train from Albury to the timber wharf at Rozelle. It was then loaded on ships for dumping. From 1 July 1946 to 1 September 1946 records show a number of trainloads of CWA stores consisting of 3 inch mortar, 4.2 inch mortar and 25 pounder

\(^{42}\) Australian War Memorial file AWM78 228/1 ‘HMAS MURCHISON: Reports of Proceedings’ - “During the dog watches an army scuttling party was transferred to the 9,000 ton hulk Bantam, which was loaded with lethal gas and ammunition, and had been towed to a position 136° Macquarie Light 32 miles by the tug Tancred. After scuttling charge fuzes had been ignited and the party re-embarked, HMAS Condamine and HMAS Arunta carried out FC firings [This term, in the context of the shoot, most probably means Fire Control rather than Full Charge; definition from Major Graeme Andrews and Major Keith Parker pers. comm.] at the hulk, which sank 10 minutes after the first charge detonated and disappointingly before HMAS Murchison could open fire. Direct hits by HMAS Condamine were observed”; Report of Proceedings month ending 30 September 1946. The following is reputedly detailed in ‘HMAS CONDAMINE: Reports of Proceedings’ – “…..at 1705 when we engaged the Bantam, our first salvo was reported 100 yards over and Murchison observed 3 direct hits on Bantam. Due to the heavy swell firing conditions were most difficult” (From Major Chris Hely notes).

\(^{43}\) See also the Sydney Morning Herald, 9 April 1992, frontpage. A different coordinate is given in a Fishing Grounds and Sea Routes Protection Regulations “Report of Sinking of Ship at Sea” which gives 34º.07’ S, 151º.151’ E at 100 fathoms [record held by Royal Australian Navy (RAN) Hydrographic Office].

\(^{44}\) Originally designed to provide smoke screens for camouflage purposes, they were modified to spray mustard gas from planes. Also referred to as Smoke Cloud Installation.

\(^{45}\) Based on an interview with RAAF CW Armourers who were involved with the loading of the Bantam. According to the No. 1 CR Commanding Officer’s report of March 1946 all SCI stocks from Picton had been moved to the wharf for dumping. From March to July the RAAF gas weapons were loaded onto the Bantam (Kevin Garr pers. comm., based on personal diary notes).

\(^{46}\) Australian War Memorial file AWM78 228/1. “….on Wednesday 11\(^{th}\) [HMAS] Murchison transferred an army scuttling party to the 1,200 ton hulk Binngarra, an ex Manly ferry which had been towed to its sinking position by a tug. The hulk, which was loaded with ammunition and gas, sank at 1757K four minutes after the scuttling charges detonated. The sinking position was 122° Macquarie Light 35.5 miles and the depth 1100 fathoms”; Report of Proceedings, month ending 31 December 1946. A coordinate given in a Fishing Grounds and Sea Routes Protection Regulations “Report of Sinking of Ship at Sea” matches this entry (34° 10’ S, 151º 53’ E at 1100 fathoms [record held by Royal Australian Navy (RAN) Hydrographic Office].
ammunition were shipped to Sydney for seadumping. Also on 2 December 1946 a shipment of 334 tons of 5 inch bombs and 25 pounders was moved to the coast for sea dumping. An inventory from 1943 gives an idea of the range of types of CWA that may have been dumped (Appendix B).

A few other short records are available regarding sea dumping of CWA off New South Wales. From March to May 1946 the Commanding Officer of No. 1 CR noted the following; March 1946 “All charged SCI from Picton and charged bombs at Marangaroo have been convoyed by motor transport to the State Explosive Wharf in Sydney for destruction by drowning at sea”; April 1946 “This tunnel (Picton) has recently been cleared of chemical warfare stocks” and also “chemical warfare stocks are now being loaded at Sydney for destruction by drowning at sea” and lastly in May 1946 it again states that “Chemical warfare stocks are also being loaded at Sydney for destruction by drowning at sea”. In the first edition of this report it was stated that sea dumping occurred from the RAAF stores at Clarence during 1947 and 1948. This is based on a misinterpretation of the following war diary entries; 20 October 1947 “Final inspection of the CW disposal site at Clarence” and 20 August 1948 “Inspection and disposal of CW stocks at Clarence”. A burn of 2000 tons of CW stock from Marangaroo and Glenbrook occurred at Newnes State forest. The burn site was sometimes referred to as the Clarence disposal area due to its proximity to Clarence tunnel. This is the disposal to which these entries refer and has no relationship to the CW stocks kept at Clarence tunnel.

An old map shows a proposed munitions disposal area for RAAF supplies of CWA [with coordinates (34º 02' S, 151º 42.5' E); (34º 12' S, 151º 42.5' E); (34º 02' S, 151º 55' E); (34º 12' S, 151º 55' E)]. (figure 2). This was near the designated dump circle apparently used by the Army (figure 2). An inventory (Appendix C) shows the range of CWA held at No. 1 Central Reserve. It is important to note that 2000 tons of RAAF

47 War records for Albury [Australian War Memorial, ACT – War Diary Records for 1 Base Ammunition Depot, Albury (The Australian Army’s storage depot for CW) - AWMS2 13/14(2)] detail the following (all mustard gas unless otherwise stated); 1 July 1946, Issued 168 tons 4.2" (inch) mortar for destruction by sea dumping; 7 July 1946, Owing to leakers with first shipment of 4.2" mortar decided to change to 25 pounder (pdr) until all 4.2" inspected. Loaded 270 tons 25 pdr; 8 July 1946, loaded 90 tons 25 pdr completing train of 360 tons; 14 July 1946, Issued 360 tons 25 pdr to Sydney for destruction; 21 July 1946, Loaded 315 tons 25 pdr; 22 July 1946, Loaded 45 tons 25 pdr completing train of 360 tons to Sydney; 29 July 1946, Issued 285 tons 25 pdr to Sydney. Unable to complete train due to shortage of transport; 4 August 1946, 150 tons 4.2" mortar and 118 tons 25 pdr; 11 August 1946, Issued 6,907 boxes 4.2" mortar and 25 pdr for movement to Sydney; 18 August 1946 340 tons of 3" mortar, 4.2" mortar and 25 pdr for Sydney; 25 August 1946, 360 tons 25 pdr to Sydney; 1 September 1946, Issued 279.5 tons to Sydney. This shipment included B [probably meaning BBC (tear gas)].

48 This shipment included B4, thickened BBC (tear gas).

49 The entry in the first edition of this report has dumping from Picton occurring in February 1948 which is incorrect. There is currently no written evidence of dumping occurring beyond the date that the Bantam was sea dumped.

50 Which confirms a suggestion first made by Stoneman (1990) that bombs were sea dumped from Marangaroo.

51 Also 31 August 1948 “Departure F/Lt (Flight Lieutenant) Archer after disposal of CW stocks”.

15
CW from No. 1 CR52 was burnt at Newnes State Forest. There is currently no evidence that significant sea dumping occurred off New South Wales, beyond the December 1946 date for the Binngarra.

One dumping is known since World War II off New South Wales. Nine filled and two empty mustard gas bottles weighing over 4 pounds were dumped in position 34º 23' S, 151º 26' E on 12 October 1965 in 310 fathoms. These had come from the Nuclear Biological Chemical Defence (NBCD) school53 and probably relates to its defensive work.

\textit{Victoria}54

In preparation of a sea dump of CW ammunition from the Australian Army depot at Albury (1 BAD)55, on 5 August 1948, approximately one third of the crew of LST (Landing Ship Tank) 3017 were sent to Albert Park Barracks to see instructional films on chemical warfare shell and ammunition, the films having been supplied by the Army. On 9 August the ships company were supplied with anti-gas respirators and loading of CW shell was commenced at Williamstown in the morning of 10 August 194856. Having loaded with 400 tons of CW shell, dumping was completed in the afternoon of 17 August within a 3 mile radius of (39º 45' S, 142º 34' E57) (see figure 4). On 24 August 1948, 402 tons of chemical warfare shell was loaded and then dumped the following day (25 August 1948). Loading of a further 400 tons of CW ammunition was completed on 2 September and the ship proceeded to the dump area west of King Island. Dumping was completed in the morning of 3 September. On 5 September, loading of CW shell was recommenced with the loading of 432 tons of CW ammunition being completed 8 September. Owing to inclement weather, the ship did not proceed to sea until the next day with dumping completed in the dump zone on 10 September. It can be concluded all the 1,634 tons of CW ammunition was dumped within the circle as described above.

52 Involving some 20,000 bulk containers (110,000 gallons).

53 Letter stamped 29 October 1965, HMAS ANZAC at sea, ref. No. 169/13. Date of supply of the items was thought to be at least 10 years prior to the dump date. EPA 94/7012.

54 Australian War Memorial, Canberra. File AWM78 337/1.

55 That the ammunition came from here is based on an interview with Jim Munroe who assisted the dumping operation and also from the file Australian Archives, New South Wales, Series Number SP459/1 Control Symbol 406/1/2575, which in discussing the programs of ammunition dumping for LSTs, including the 3017, notes that “included in the 7,152 tons of ammunition to be sea dumped at Albury is 2,156 tons of heavy cases chemical warfare ammunition” (20 May 1947). It is a reasonable assumption that the 522 ton difference was also dumped in this target area.

56 And during the afternoon the CW films were brought on board and shown to the remaining two thirds of the ships company. Decontamination exercises were carried out each day CW shell was on board.

57 In excess of 1,000 metres. Royal Australian Navy (RAN) Hydrographic Office (pers. comm.).
Exposure to Dumped CWA

International Incidents

There are several recorded accidental recoveries of drums filled with CWA. During the spring of 1984, eleven Danish fishermen were exposed to mustard gas and were burned while fishing in the Baltic Sea (Aasted 1985). Many accidental recoveries have resulted from trawling in fishing areas around Japan (Kurata 1980). Eight areas off the Japanese coast were designated for sea dumping, although dumping outside these areas is known to have occurred. Fifty two people were wounded in eleven accidents at one dumping site alone. Kurata identified several key factors in the occurrence of accidents.

1. The sites where the CWA was dumped often violated the guidelines developed for dumping in Japanese waters (1000m depth and 18.5 km from shoreline), as they were much closer to the shore.

2. In Japan little attention was paid to the correlation of sites with fishing areas and ecologically sensitive areas.

3. There was insufficient public knowledge of dumping site locations.

Australian Incidents

The Australian public became aware of CWA dumping in Australia in November 1945 when the dumping operation off Brisbane was under way. As US soldiers were loading CWA at the Darra depot in readiness for sea dumping off Brisbane a US soldier was killed and two were injured when a gas shell was dropped and exploded\(^{58}\). Other newspaper reports in 1945 revealed a one ton cylinder dumped by the boat, the "City of Fort Worth" and only partially filled, had floated with most of the cylinder underwater\(^{59}\). With prevailing currents it was expected to wash up in the northern part of New South Wales\(^{60}\). Obviously, it posed a problem for the public if opened deliberately or if accidentally smashed against rocks. Apparently, it was never recovered and most likely sank south of the dump site. Crew members of the tug

\(^{58}\) Newspaper article, Sydney "Daily Telegraph", 17 November 1945. The article states that “2,400 tons to be disposed over a period of several months”. See also page 11.

\(^{59}\) Newspaper articles, "Courier Mail", 19 November 1945 (EPA 94/6789); “Melbourne Sun”, 19 November 1945.

\(^{60}\) South of Coolangatta.
"Keera" were severely burnt while disposing of mustard gas bombs61. These bombs had been hung over the side of the tug and axes were used to smash holes in them to prevent flotation62. Jettisoned tear gas grenades in wooden boxes also washed ashore at Maroochydore, 60 to 70 miles north of Brisbane in 194563.

On 25 August 1983 two trawlermen snagged a one ton cylinder of bulk mustard off Cape Moreton64. The cylinder was brought ashore on a beach on Moreton Island and the contents were neutralised using chlorine. As trawlers off Cape Moreton do not operate beyond 110 fathoms the cylinder must have been dredged in a shallower depth than this, probably due east of the northern tip of Cape Moreton65. As previously mentioned on 19 January 1970 a one ton cylinder of bulk mustard gas was encountered by a trawler at 20º 42.8' S, 153º 35.7' E in 69 fathoms and later in the 1970s a one ton cylinder came ashore in the same area [Haug (undated)]. This is north of the Cape Moreton dumping site and it is not known how material ended up here.

THE FATE OF CWA AFTER DUMPING

Most of the CWA would have sunk close to its dump position, although, under the influence of sea currents there would have been some drift of the lighter material. As mentioned, it is known at least one cylinder floated from the original dump position.

Once on the seabed the cylinders may be buried by sediment or could become encrusted by sea life. The rate of release of CWA will depend on the corrosion rate of the cylinders. Once released it is necessary to understand how the CWA will breakdown in water. With the release of the agent it is also necessary to assess the possible environmental effects and risks to the public. These issues will be considered in turn.

Corrosion of cylinders

The corrosion of ammunition shells is a complex phenomenon. A Russian study (reported in Stock 1996) concluded sea current was the important determinant of corrosion rate. Other reports argue sea conditions are very complex and combinations of external factors can create different scenarios. We do know the 1 ton cylinder

61 Newspaper article “Herald”, 26 November 1945, presumably referring to the disposal operation as outlined on page 9/10.

62 Several marksman were stationed at the stern to ensure all the bombs sank (from an eyewitness account).

63 Sometime before 4 September 1945. On 22 August 1945 it was ascertained that the US Army authorities proposed to jettison 473 – 44 gallon drums of tear gas and that the US Army, in tests, had shown the drums would sink to 60 feet and then burst. With the trial completed they “were to proceed with the jettison”. The dates suggests these 2 entries may be interrelated. Although not a CWA incident, press reports also revealed a member of the public had been severely burned from liquid chlorine gas after opening a 44 gallon drum near Evans Head in November 1945, Newspaper article “Herald”, 27 November 1945, EPA 94/6789.

64 Newspaper article, “Courier Mail”, 31 August 1983.

65 Peter Seib, a long time trawlerman in the area, pers. comm.
retrieved off Cape Moreton had developed a number of small "pinholes" which allowed leakage of the mustard. It was also reported some of the cylinders were already partially rusted when dumped66. Bulk cylinders were typically made from relatively thin steel when compared with artillery ammunition, filled with thickened or unthickened mustard gas. Heavy walled artillery projectiles are likely to remain intact longer than other cylinders (Major Keith Parker pers. comm.).

The breakdown of CWA in sea water

Although a variety of CWA was sea dumped, mustard gas was the primary agent involved. Mustard gas, also known as sulfur mustard [di(2-chloroethyl)sulfide], is actually an oily liquid at room temperature. As mustard gas was the primary CWA dumped, this section will concentrate on its behaviour in sea water.

Factors affecting the breakdown of mustard gas in sea water

Although mustard gas has a low solubility in water, once it dissolves it quickly hydrolyses (reacts with water) to primarily form thiodiglycol, together with other compounds including sulphonium and chloride salts67. The final products of the hydrolysis are said to be non-toxic (Stock 1996). The dissolution (dissolving) rate and hydrolysis rate are dependent on water quality and other environmental conditions. Some of these important variables include the following; the rates increase with increased temperature, current/ turbulence and with decreased salinity68. The effect of sea current and sea temperature at the two main dump sites will be assessed.

Effect of sea currents and temperature on breakdown rate

Sea currents on the east coast of Australia (from about 18\textdegree S to 32\textdegree S) are dominated by the East Australian Current (EAC) which flows strongly southward (Middleton 1995). Current velocity generally decreases with depth. As the mustard gas leaks at both of the main dump sites (Cape Moreton and Sydney) it should mix in the bottom boundary layer, be diluted and hydrolyse near the dump site. Under the influence of the EAC it will most likely travel to the south at approximately the same depth. The dissolution and hydrolysis rate will be aided by the temperature found at the dump positions. The temperature at 200 metres depth off Sydney is approximately 12 to 14\textdegree Celsius during summer69. Off Cape Moreton the summer temperature at 250 metres70

66 Newspaper article, Sydney "Daily Telegraph", 17 November 1945.

67 The production of these salts will have different consequences depending on location. Within containment it is likely to concentrate to some extent and lower the pH. This may facilitate corrosion. Outside the container the salts will be diluted by seawater and have little effect (M. Mcleod and R. Mathews pers. comm.).

68 See Khordagui & Al-Ajmi 1994 and Trapp 1985 for the chemistry of mustard gas hydrolysis and the measured effect of these different environmental variables on the rate of hydrolysis.

69 New South Wales Environment Protection Authority pers. comm.

70 This is the depth of the dump circle closest to Cape Moreton. This depth is used for the following modelling purposes.
is slightly higher being approximately 15° Celsius. During the year the temperature at both sites can vary around this average by a few degrees. At the outer limit of the Cape Moreton dumping rectangle eg. 1,098 metres (600 fathoms) temperatures in the range 4° to 6° Celsius have been measured. While the melting point of pure mustard gas is 14.4° Celsius, in order for it to be maintained in a solid state, the material would need to be maintained in an environment many degrees below the melting point eg; at least at the freezing point of water, since any impurity would lower the melting point. As the surrounding temperature would be at least 10° Celsius at the shallower dump sites it is virtually certain the material would be present in a liquid state. Even at 4° Celsius at the deepest site off Cape Moreton it should remain liquid. This contrasts with the cooler Baltic waters where the mustard gas is said to be in a solid state. This higher temperature has a favourable implication for the hydrolysis rate. Conditions in Australia more closely approximate those found in Kuwait waters where Khordagui H & Al-Ajmi (1994) have modelled the hydrolysis rate of mustard gas at 15° Celsius, being the average minimum sea temperature in winter. They predicted a half-life (where half of the mustard gas is hydrolysed) of 3 hours. This is a considerably faster rate than for mustard gas present in a solid state e.g. Epstein J et al (1973) have estimated that a one ton solid cylinder of mustard gas in sea water (presumably without a casing and in still water) would take 5 years to hydrolyse.

Current measurements are available close to the shallower dump circle off Cape Moreton, at a couple of degrees to the south and north. A current meter placed to the south in 1983 (29° 00.4' S, 153° 50.3' E at 190m) revealed a current velocity up to a maximum of approximately 50 centimetres/second. At another site north of the dumped mustard gas (25.85° S, 153.90° E at 300m), Merrifield and Middleton (1994) found flows to a maximum of approximately 25 centimetres/seconds. Current flows off Sydney at 120 metres can reach speeds of 60 to 80 centimetres/second.

72 Prof. Damon Ridley pers. comm.

73 Trapp (1985) has noted mustard gas containers dumped in the Baltic Sea are leaking and that the bulk of the mustard gas "remains as dangerous as it was when dumped, being protected against seawater attack by its solid state, its very low tendency to dissolve, side products of hydrolysis and dimerization products forming a protective phase when turbulence is lacking, and by the container itself".

74 Viewed in abstract form only.

75 Freeland H, Church J, Smith R and Boland F (1985) Currents Meter Data from the Australian Coastal Experiment; a Data Report. Report No. 169. CSIRO Marine Laboratories. The current meter was 12m above the sea bed.

76 The current meter was 50m above the sea bed.

77 New South Wales Environment Protection Authority pers. comm. As measured during the summer of 1995. The rate of current flow during this summer would be slightly faster than "normal" due to the East Australian Current being particularly active.
Water will ingress through the holes and hydrolyse some of the mustard gas within its housing. This was seen in the 1 ton bulk cylinder dredged off Cape Moreton which contained a substantial amount of water and hydrolysis products78. Any remaining mustard will leach slowly through the holes and with the large volumes of water washing past the container, would remain at low concentrations79 and hydrolyse quickly.

\textit{In conclusion we can surmise that mustard gas will slowly leak as its housing corrodes80 and small egress points develop. The combination of slow leakage rate, warm sea temperature and currents will quickly dissolve and hydrolyse the mustard gas, both within its housing and as it diffuses through the holes. At Cape Moreton and Sydney, the hydrolysis products will be rapidly dispersed to the south by the EAC.}

\textbf{Risks to the public in Australia}

Due to their locations, the risk of trawlers encountering the dumped CWA is low. Only two cylinders have been snared since the war which indicates the majority of the material is away from current trawling operations. The CWA retrieved would appear to have been stray cylinders (or the others are now buried) eg: the area up to 100 fathoms off Cape Moreton has been extensively trawled by prawn fishermen. The site off Sydney is a well known foul ground and is generally avoided by trawlers. Only one cylinder has washed ashore since world war two so the risk to the general public is virtually nil. This contrasts with overseas experience where there have been many encounters and accidents with trawled or washed up cylinders81. Although the areas are not currently trawled the CWA may still pose a threat to future possible trawling or other activities including sea mining. As the containers deteriorate, they may become more likely to break open when they hit the deck. If they are heavily corroded their contents will be mainly sea water and hydrolysis products. The more intact the containers, the more likely there will be mustard present.

\textbf{Potential environmental effects}

Literature that addresses the effects of CWA exposure on marine biota is very limited. Ecotoxicity experiments conducted in an aquarium apparently show mustard gas has no significant effect on fish. It is also believed fish do not bioaccumulate the agent (due to its solubility in water) [both reported in Stock (1995)]. There are two sites off Australia where many thousands of tons of mustard gas have been dumped. The site off Cape Moreton covers a large area and as mentioned includes a designated dumping site as proclaimed by the \textit{Beaches, Fishing Grounds, and Sea Routes}78.

\begin{flushright}
\footnotesize
\begin{enumerate}
\item R. Mathews pers. comm.
\item And would never reach saturation level. Mustard which had been thickened with rubber or perspex would flow less freely.
\item As already noted the corrosion rate will be faster for bulk cylinders than artillery shells.
\item CWA effects on health are numerous (see Pechura and Rall 1993) and include respiratory and skin problems. Mustard gas and Lewisite are blister agents, blistering the skin after contact. Mustard gas combines with DNA (that is, it is an alkylating agent).
\end{enumerate}
\end{flushright}
Protection Act 1932 near Cape Moreton. Originally chosen as a site to abandon derelict boats away from shipping routes and trawling operations, it became a general dumping ground for many sorts of unwanted material. To my knowledge, no biological surveys have been undertaken at the site. The sea bed at the centrepoint is described as sand and shell\(^82\). Although knowledge of non-CWA dumping episodes over the half century this area was available as a waste dumping ground is limited, the data that exists (for the 1960s) gives an indication of the amount of waste that may have accumulated\(^83\). There have been many dumpings close to the CWA dumped 25 miles east of Cape Moreton\(^84\). Other material would lie on the sea bed within this rectangle\(^85\). If the cylinders, bombs or shells started leaking they would pose a danger only to biota surviving in this accumulated debris. The hazard, if any, would depend on the rate of leakage of mustard from the container and as argued it should be a slow and gradual leak. Based on the data provided above, fish using the dump areas as artificial reefs should not be affected by the leakage of mustard gas. The nearest identified environmentally sensitive area to the dump site is the Moreton Bay Marine Park, declared in 1993. Surrounding Cape Moreton, its boundary extends three nautical miles from the coast. It is a significant distance from the 100 fathom line and thus the closest of the dumped CWA. As discussed, current flows around the mustard gas will be to the south. As the Marine Park is to the west of the dumping circle, the mustard gas should pose no threat. A similar situation exists at the major dumping site

\(^82\) Royal Australian Navy (RAN) Hydrographic Office (pers. comm.).

\(^83\) Federal Government records indicate 1,022.5 tons of ammunition were dumped in the dumping circle between 7 March 1962 and 30 June 1964. A further 4,000 pounds of ammunition was dumped in February 1968 and an old dredge in 3 June 1969. From Plunkett (2003).

\(^84\) This second site was the centrepoint of a second official Army dump site which replaced the one closer to Cape Moreton. It had coordinates of 27° S, 154° E with a diameter of 5 nautical miles. Data does not indicate when it was first used as a dump circle by the Australian Army. Within the second dump circle the following is known to have been dumped: October 1968, 600lbs of boxed rifle barrels and sulphur bottles; January 1969, 2649 lbs of electric plating vats; 1 ton of ordnance stores on 6 November 1965; 0.5 tons medical stores and sulphur drugs, 2 February 1966; 20 December 1966 - medical stores from water pouce 0.25 tons; 0.5 tons of metal, 22 January 1969 and 1 ton of scrap metal, 17 August 1971. Data from Plunkett (2003).

\(^85\) Records show after the war non CWA ammunition was dumped beyond the 100 fathom line. US supplies including vehicles, old barges with ammunition and general stores (Peter Seib, pers comm, whose father in law was involved in the postwar dumping) were dumped after the war. Material trawled off Cape Moreton includes typewriters, clothing and medical supplies (Peter Seib pers comm). Six hundred tons of grenades were dumped in the rectangle after the war also (T. Davis pers comm). Conventional ammunition was dumped in unknown quantities by boats such as the MV (Motor Vessel) Katoora.
off Sydney. At least 68 boats have been dumped here. There are also submarine cables running through the area. It was definitely known and used by the defence forces immediately after World War II. The nearest sensitive areas are well away from this dump site.

The Future of Dumped CWA in Australian Waters

As the two main dump areas do not coincide with any sensitive marine environments there is unlikely to be any major environmental impacts from material remaining at the site (however, as noted earlier, material could have floated away from the site during dumping operations, possibly to marine sensitive areas). Retrieval of the dumped CWA would seem to pose an unnecessary risk, both a risk inherent in handling the material and a risk associated with the dangerous waste dumped with the CWA (known to include ammunition and most likely to also include chemicals). Further, it would seem to be impractical to individually locate thousands of scattered bombs and artillery shells, many now presumably buried by sediment and other waste.

International experience has shown that, wherever possible, public knowledge of the location of CWA dumps has been beneficial in avoiding contact incidents. Kurata (1980) has shown that since a national public inquiry in 1972, when information was released regarding the Japanese dumping sites, there have been no casualties from accidents. This compares with several deaths and dozens of wounded from dumped CWA contact in the period from World War II to 1972. He urged the release of such information in other countries to prevent future accidents. As the CWA dumping sites in Australia are not known to the general public their locations have been revealed to prevent possible exposure. As the locations of CWA dump sites in Australian waters are in rarely fished areas, the risk of accidental recovery by a trawler is low. It has been noted there have been only 2 cylinders trawled in the last 55 years. The risk to the general public contacting a drum is extremely small. However, if recovered, ANY ordnance (chemical or non-chemical) must not under any circumstances be touched or

86 Limited data shows 300 tons of ammunition was dumped here in August/September 1945. 18 pounder with shell fuzes removed and boxed, and cartridges SAA 50 boxed were dumped 15 April 1945. In 1946 bombs, incendiary rolls, obsolete war planes and engines and more ammunition was dumped. Material dumped in 1976 includes the BOSUN, a crane lighter and sodium filled exhaust valves. More valves were dumped between 1978 and 1982. More recently, in 1993, a human body was buried at sea here. Data from Plunkett (2003).

87 There is anecdotal evidence to suggest some trawler operators, off both Cape Moreton and Sydney, after snaring conventional ammunition within fishing areas, redump the material at sea at a site away from trawling operations. This transmigration of the dumped material means that the original coordinates of the dumping sites may no longer hold. It is possible CWA material has been trawled in the past and redumped in this fashion. I thank Major Keith Parker for this suggestion. The following is also offered by Major Chris Hely “There are a number of incidences where dumped Explosive Ordnance (not necessarily CW), although initially sinking appears to have become buoyant at lower levels; probably due to denser layers of water because of temperature etc differences. The items appear to have floated on top of these denser layers and consequently washed up considerable distances from where they were originally dumped. It was probably as a result of these incidences that buoyancy testing became common practice.”
tampered with88. Inappropriately handled ordnance can be very dangerous. CWA recovered overseas have caused serious injury even though the material is over 50 years old89. Any incidents should be reported to the local police. They will in turn contact the relevant authority responsible for its appropriate disposal. If possible one should keep the general public away from the object in question.

The publication of this paper will, hopefully, prevent any accidents occurring at the CWA dump sites where co-ordinates have been revealed. It will also, hopefully, encourage other governments to reveal locations of their CWA sea dump sites for the same purpose.

88 In the case of fishermen, no attempt should be made to transfer the container or munition onto the deck.

89 These incidents are usually associated with thickened mustard in shallow water (R. Mathews pers. comm.).
REFERENCES

Stoneman N S (1990) *The Chemical Warfare Story Of The Royal Australian Air Force 1942 to 1946*. (Booklet produced as a souvenir of reuniting RAAF personnel who were associated with CWA during the war).

ACKNOWLEDGMENTS

Many thanks to Major Keith Parker and Major Chris Hely who both collected some of the information used in this report and who also made useful comments on the draft. Narelle Blackaby spent many an hour finding crucial Commonwealth files and Wayne Furler and David Bishop gave their total support to the project. I also thank Therese Manning, John Howell, Jason Middleton, Prof. Damon Ridley, Dr James Cook and Robert Mathews, whose suggested alterations were incorporated in this paper. Thanks to Mark Bolger for determining some of the dump coordinates from old maps and to John Gordon-Smith for suggesting amendments to the report.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>Australian Capital Territory</td>
</tr>
<tr>
<td>AWM</td>
<td>Australian War Memorial</td>
</tr>
<tr>
<td>BAD</td>
<td>Base Ammunition Depot (Army)</td>
</tr>
<tr>
<td>BBC</td>
<td>Bromobenzylcyanide</td>
</tr>
<tr>
<td>CNS</td>
<td>Tear gas</td>
</tr>
<tr>
<td>CO</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td>CR</td>
<td>Central Reserve</td>
</tr>
<tr>
<td>CRU</td>
<td>Chemical Research Unit (RAAF)</td>
</tr>
<tr>
<td>CWA/CW</td>
<td>Chemical Warfare Agent</td>
</tr>
<tr>
<td>DM</td>
<td>Adamsite</td>
</tr>
<tr>
<td>EPA</td>
<td>Environment Protection Agency</td>
</tr>
<tr>
<td>FBMU</td>
<td>Flying Boat Maintenance Group</td>
</tr>
<tr>
<td>H/HD</td>
<td>Mustard gas</td>
</tr>
<tr>
<td>HMAS</td>
<td>Her Majesty’s Australian Ship</td>
</tr>
<tr>
<td>HQ</td>
<td>Headquarters</td>
</tr>
<tr>
<td>L</td>
<td>Lewisite</td>
</tr>
<tr>
<td>LC</td>
<td>Light Case (bomb)</td>
</tr>
<tr>
<td>LST</td>
<td>Landing Ship Tank</td>
</tr>
<tr>
<td>NBCD</td>
<td>Nuclear Biological Chemical Defence (School)</td>
</tr>
<tr>
<td>RAAF</td>
<td>Royal Australian Air Force</td>
</tr>
<tr>
<td>SCI</td>
<td>Smoke Curtain/Cloud Installation</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
</tbody>
</table>
APPENDIX A

Stockage of Chemical Munitions, US

Advance Chemical Depot, Aviation, Charters Towers, Queensland

81 tons mustard (H), in bulk
94 tons lewisite (L), in bulk
15 tons CNS, in bulk
23,500 bombs, M47A2, 100-lb (H)
100 bombs, M47, 100-lb (L)
600 bombs, M47, 100-lb (empty)
496 M10 spray tanks, empty
204 M20 spray tanks, empty

Kangaroo (SOS Dump) (26 miles North of Townsville)

15,540 bombs M47A2, (H) 100-lb
18,168 - 75 mm gun (H)
14,370 - 75 mm howitzer (H)
198 - 105 mm howitzer (H)
1,401 - 155 mm howitzer (H)
1,171 - 155 gun (H)
300 DM Candles (toxic smoke)

Darra (near Brisbane Queensland)

373 tons mustard (H), in bulk
101 tons lewisite (L), in bulk
82 tons tear gas solution (CNS) in bulk
4,945 bombs, empty, 100-lb
5,595 DM candles (toxic smoke)
5,489 - 105 mm howitzer (H)

Columboola (200 Miles west of Brisbane)

26,023 bombs, (H) 100-lb
4,815 - 75 mm gun (H)
36,036 - 75 mm howitzer (H)
83,994 - 105 mm howitzer (H)
10,856 - 155 mm howitzer (H)
585 - 155 gun (H)

1 From Annex No. 1 To Chemical Warfare Plan, South West Pacific Area. Stockage of Chemical Munitions, 1 November 1943.
Brisbane

4,216 chemical land mines (US) empty
134 M10 tanks, airplane smoke, empty
240 M20 spray tanks, empty
6 M33 spray tanks, empty

Geelong (40 miles SW of Melbourne)

431 tons mustard (H), in bulk

Kingswood (25 miles west of Sydney)

56,909 - 105 mm howitzer (H)
10,825 - 155 mm howitzer (H)
Stockage of Chemical Munitions, AUSTRALIAN ARMY

Albury NSW

- 85,300 - 25 pounder shell, base ejection, filled BBC (tear gas)
- 258,000 - 25 pounder shell, base ejection, filled mustard
- 26,900 - 6 inch howitzer shell, base ejection, filled mustard
- 8,000 - 4.2 inch mortar bombs, filled phosgene
- 39,500 - 4.2 inch mortar bombs, filled mustard
- 22,500 - 5 inch rocket bomb, filled phosgene
- 3,900 - mines, chemical, filled mustard

1 From Annex No. 1 To Chemical Warfare Plan, South West Pacific Area. Stockage of Chemical Munitions, 1 November 1943.
Stockage of Chemical Munitions, RAAF1

No. 1 Central Reserve (50 miles west of Sydney)

8,000 bomb, 30-lb LC charged mustard
400 bombs, 65-lb LC (empty)
4,800 bombs, 250-lb LC charged mustard
3,600 bombs, 250-lb LC charged phosgene
200 bombs, 250-lb LC (empty)

570 SCI2 500 lb charged mustard
3 SCI 500 lb (empty)
75 SCI 250 lb (empty)

1 From Annex No. 1 To Chemical Warfare Plan, South West Pacific Area. Stockage of Chemical Munitions, 1 November 1943. Bulk storage drums were also held but most of these are believed to have been destroyed by burning.

2 The SCI are from an inventory 18 August 1944.
FIGURE 1—LIKELY DUMP AREA FOR 8000 TONS OF CHEMICAL WARFARE AGENT DUMPED OFF BRISBANE

- Rectangle, within which, 8000 tons of CWA is likely to have been dumped.
- Two designated dump circles off Cape Moreton, likely targeted for CWA dumping.
FIGURE 2—CHEMICAL WARFARE AGENT DUMP AREAS OFF SYDNEY

Most likely dump site for 5000 tons of CWA disposed off Sydney. The dump circle has a diameter of 5 nautical miles.

Proposed disposal area for RAAF CWA.

Wreck of the Bantam

Wreck of the Binngarra

34.5 deg S

34 deg S

0 20 40
Kilometres
FIGURE 3—CHEMICAL WARFARE AGENT DUMP AREAS OFF TOWNSVILLE

<table>
<thead>
<tr>
<th>Latitude</th>
<th>17 deg S</th>
<th>18 deg S</th>
<th>149 deg E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dump site for 700 mustard charged 65 pound bombs</td>
<td>Two designated dump sites for CWA, near Bowen, Queensland.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dump site for 320 mustard charged 100 pound bombs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Cardwell
- Hipchinbrook Island
- Townsville
FIGURE 4—CHEMICAL WARFARE AGENT DUMP AREA OFF VICTORIA

Dump zone for 1,634 tons of chemical warfare agent
ISBN 0 642 29587 5.